Optimal Quadrati Spline Collo ation Methods for the Shallow Water Equations on the Sphere

نویسندگان

  • Anita T. Layton
  • K. R. JACKSON
چکیده

In this study, we present numerical methods, based on the optimal quadratic spline collocation (OQSC) methods, for solving the shallow water equations (SWEs) in spherical coordinates. A quadratic spline collocation method approximates the solution of a differential problem by a quadratic spline. In the standard formulation, the quadratic spline is computed by making the residual of the differential equations zero at a set of collocation points; the resulting error is second order, while the error associated with quadratic spline interpolation is fourth order locally at certain points and third order globally. The OQSC methods generate approximations of the same order as quadratic spline interpolation. In the one-step OQSC method, the discrete differential operators are perturbed to eliminate low-order error terms, and a high-order approximation is computed using the perturbed operators. In the two-step OQSC method, a second-order approximation is generated first, using the standard formulation, and then a high-order approximation is computed in a second phase by perturbing the right sides of the equations appropriately. In this implementation, the SWEs are discretized in time using the semi-Lagrangian semiimplicit scheme, which allows large timesteps while maintaining numerical stability, and in space using the OQSC methods. The resulting methods are efficient and yield stable and accurate representation of the meteorologically important Rossby waves. Moreover, by adopting Part of this work was done while the author was at the Department of Computer Science, University of Toronto. yPartly supported by Natural Sciences and Engineering Research Council (NSERC) of Canada.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrati Spline Galerkin Method for the Shallow Water Equations on the Sphere

Currently in most global meteorological applications, the spectral transform method or low-order finite difference/finite element methods are used. The spectral transform method, which yields high-order approximations, requires Legendre transforms. The Legendre transforms have a computational complexity of O(N3), where N is the number of subintervals in one dimension, and thus render the spectr...

متن کامل

Biorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems

In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...

متن کامل

Solving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets

In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...

متن کامل

Generalized B-spline functions ‎method‎‎ for solving optimal control problems

‎In this paper we introduce a numerical approach that solves optimal control problems (OCPs) ‎using collocation methods‎. ‎This approach is based upon B-spline functions‎. ‎The derivative matrices between any two families of B-spline functions are utilized to‎ ‎reduce the solution of OCPs to the solution of nonlinear optimization problems‎. ‎Numerical experiments confirm our heoretical findings‎.

متن کامل

An approach based on statistical spline model for Volterra-Fredholm integral equations

‎In this paper‎, ‎an approach based on statistical spline model (SSM) and collocation method is proposed to solve Volterra-Fredholm integral equations‎. ‎The set of collocation nodes is chosen so that the points yield minimal error in the nodal polynomials‎. ‎Under some standard assumptions‎, ‎we establish the convergence property of this approach‎. ‎Numerical results on some problems are given...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000